
Quality excellence to enhance your career
and boost your organization’s bottom line

asq.org/cert

CERTIFIED SOFTWARE
QUALITY ENGINEERC

SQ
E

2 Certified Software Quality Engineer

Certification from ASQ is considered a mark of quality
excellence in many industries. It helps you advance
your career, and boosts your organization’s bottom
line through your mastery of quality skills. Becoming
certified as a Software Quality Engineer confirms your
commitment to quality and the positive impact it will
have on your organization.

Examination
Each certification candidate
is required to pass a written
examination that consists of
multiple-choice questions that
measure comprehension of
the body of knowledge.

3Certified Software Quality Engineer

The Certified Software Quality Engineer (CSQE) understands software quality
development and implementation, software inspection, testing, and verification
and validation; and implements software development and maintenance
processes and methods.

CSQE
Computer Delivered – The CSQE
examination is a one-part,
175-question, four-and-a-half-hour
exam and is offered in English only.
One hundred and sixty questions
are scored and 15 are unscored.

Paper and Pencil – The CSQE
examination is a one-part,
160-question, four-hour exam
and is offered in English only.

INFORMATION

For comprehensive exam information on Software Quality Engineer
certification, visit asq.org/cert.

Certified Software Quality Engineer

4 Certified Software Quality Engineer

Education and/or Experience
Work experience must be in a
full-time, paid role. Paid intern,
co-op, or any other course work
cannot be applied toward the work
experience requirement.

You must have eight years of
on-the-job experience in one or
more of the areas of the Certified
Software Quality Engineer Body
of Knowledge.

A minimum of three years of this
experience must be in a decision-
making position. (“Decision-making”
is defined as the authority to
define, execute, or control projects/
processes and to be responsible for the
outcome. This may or may not include
management or supervisory positions.)

If you’ve ever been certified
by ASQ as a Quality Engineer,
Quality Auditor, Reliability Engineer,
Supplier Quality Professional, or
Quality Manager, experience used
to qualify for certification in these
fields applies to certification as
a Software Quality Engineer.

If you have completed a degree*
from a college, university, or
technical school with accreditation
accepted by ASQ, part of the
eight-year experience requirement
will be waived, as follows (only one
of these waivers may be claimed):

•	Diploma from a technical
or trade school–one year
will be waived.

•	Associate’s degree–
two years waived.

•	Bachelor’s degree–
four years waived.

•	Master’s or doctorate–
five years waived.

*Degrees or diplomas from
	 educational institutions outside
	 the United States must be
	 equivalent to degrees from
	 U.S. educational institutions.

5Certified Software Quality Engineer

•	�Must possess a fundamental
understanding of quality
philosophies, principles,
methods, tools, standards,
organizational and team
dynamics, interpersonal
relationships, professional
ethics, and legal and
regulatory requirements.

•	�Must evaluate the impact of
software quality management
principles on business objectives
and demonstrate comprehensive
knowledge of developing and
implementing software quality
programs, which include
tracking, analyzing, reporting,
problem resolution, process
improvement, training, and
supplier management. Must have
a basic understanding of how
and when to perform software
audits including audit planning,
approaches, types, analyses,
reporting results, and follow-up.

•	�Must understand systems
architecture and be able to
implement software development
and maintenance processes,
quantify the fundamental
problems and risks associated
with various software
development methodologies,

and assess, support, and implement
process and technology changes.

•	�Must be able to apply project
management principles and
techniques as they relate to software
project planning, implementation,
and tracking. Must be able to
identify, evaluate, and manage risk.

•	�Must have an understanding of
measurement theory. Must be able
to select, define, and apply product
and process metrics and analytical
techniques, and communicate results.

•	�Must be able to apply verification
and validation processes, including
early software defect detection
and removal, inspection, and
testing methods (e.g., types,
levels, strategies, tools, and
documentation). Must be able to
analyze test strategies, develop test
plans and execution documents,
and review customer deliverables.

•	� Must have a basic understanding of
configuration management processes,
including planning, configuration
identification, configuration
control, change management,
status accounting, auditing, and
reporting. Must be able to assess
the effectiveness of product release
and archival processes.

Minimum Expectations

6 Certified Software Quality Engineer

I. General Knowledge
	 (16 questions)

A.	 Benefits of Software
	 Quality Engineering
	 Within the Organization

Describe the benefits that software
quality engineering can have at the
organizational level. (Understand)

B.	 Ethical and Legal Compliance
1.	 ASQ code of ethics for

	 professional conduct
Determine appropriate behavior
in situations requiring ethical
decisions, including identifying
conflicts of interest, recognizing
and resolving ethical issues, etc.
(Evaluate)

2.	 Regulatory and legal issues
Describe the importance of
compliance to federal, national,
and statutory regulations on
software development. Determine
the impact that issues such as
copyright, intellectual property
rights, product liability, and data
privacy. (Understand)

C.	 Standards and Models
Define and describe the ISO 9000
and IEEE software standards, and
the SEI Capability Maturity Model
Integration (CMMI) for development,
services, and acquisition assessment
models. (Understand)

D.	 Leadership Skills
1.	 Organizational leadership

Use leadership tools and
techniques (e.g., organizational
change management, knowledge
transfer, motivation, mentoring and
coaching, recognition). (Apply)

2.	 Facilitation skills
Use facilitation and conflict
resolution skills as well as
negotiation techniques to manage
and resolve issues. Use meeting
management tools to maximize
meeting effectiveness. (Apply)

3.	 Communication skills
Use various communication
methods in oral, written, and
presentation formats. Use
various techniques for working
in multicultural environments, and

Topics in this body of knowledge include additional detail in the
form of subtext explanations and the cognitive level at which
the questions will be written. This information will provide useful
guidance for both the Examination Development Committee and
the candidates preparing to take the exam. The subtext is not
intended to limit the subject matter or be all-inclusive of what might
be covered in an exam. It is intended to clarify the type of content
to be included in the exam. The descriptor in parentheses at the
end of each entry refers to the highest cognitive level at which the
topic will be tested. A more comprehensive description of cognitive
levels is provided at the end of this document.

BODY OF KNOWLEDGE

Certified Software Quality Engineer (CSQE)

identify and describe the impact
that culture and communications
can have on quality. (Apply)

E.	 Team Skills
1.	 Team management

Use various team management
skills, including assigning roles
and responsibilities, identifying
the classic stages of team
development (forming, storming,
norming, performing, adjourning),

monitoring and responding to
group dynamics, working with
diverse groups and in distributed
work environments, and using
techniques for working with
virtual teams. (Apply)

2.	 Team tools
Use decision-making and creativity
tools, such as brainstorming,
nominal group technique (NGT),
multi-voting. (Apply)

8 Certified Software Quality Engineer

II. Software Quality
	 Management (22 questions)

A.	 Quality Management System
1.	 Quality goals and objectives

Design software quality goals and
objectives that are consistent with
business objectives. Incorporate
software quality goals and
objectives into high-level program
and project plans. Develop and use
documents and processes necessary
to support software quality
management systems. (Create)

2.	 Customers and other stakeholders
Describe and analyze the effect
of various stakeholder group
requirements on software projects
and products. (Analyze)

3.	 Outsourcing
Determine the impact that
outsourced services can have
on organizational goals and
objectives, and identify criteria for
evaluating suppliers/vendors and
subcontractors. (Analyze)

4.	 Business continuity, data protection,
	 and data management

Design plans for business
continuity, disaster recovery,
business documentation and
change management, information
security, and protection of sensitive
and personal data. (Analyze)

B.	 Methodologies
1.	 Cost of quality (COQ) and

	 return on investment (ROI)
Analyze COQ categories
(prevention, appraisal, internal
failure, external failure) and return on
investment (ROI) metrics in relation to
products and processes. (Analyze)

2.	 Process improvement
Define and describe elements of
benchmarking, lean processes,
the Six Sigma methodology, and
use define, measure, act, improve,
control (DMAIC) model and the
plan-do-check-act (PDCA) model
for process improvement. (Apply)

3.	 Corrective action procedures
Evaluate corrective action
procedures related to software
defects, process nonconformances,
and other quality system
deficiencies. (Evaluate)

4.	 Defect prevention
Design and use defect prevention
processes such as technical reviews,
software tools and technology,
special training. (Evaluate)

C.	 Audits
1.	 Audit types

Define and distinguish between
various audit types, including
process, compliance, supplier,
system. (Understand)

2.	 Audit roles and responsibilities
Identify roles and responsibilities for
audit participants including client,
lead auditor, audit team members,
and auditee. (Understand)

3.	 Audit process
Define and describe the steps in
conducting an audit, developing
and delivering an audit report,
and determining appropriate
follow-up activities. (Apply)

III. System and Software
	 Engineering Processes
	 (32 questions)

A.	 Life Cycles and Process Models
1.	 Waterfall software

	 development life cycle
Apply the waterfall life cycle
and related process models, and
identify their benefits and when
they are used. (Apply)

2.	 Incremental/iterative software
	 development life cycles

Apply the incremental and iterative
life cycles and related process
models, and identify their benefits
and when they are used. (Apply)

3.	 Agile software
	 development life cycle

Apply the agile life cycle and
related process models, and
identify their benefits and when
they are used. (Apply)

B.	 Systems Architecture
Identify and describe various
architectures, including embedded
systems, client-server, n-tier, web,
wireless, messaging, collaboration
platforms, and analyze their impact
on quality. (Analyze)

C.	 Requirements Engineering
1.	 Product requirements

Define and describe various
types of product requirements,
including system, feature,
function, interface, integration,
performance, globalization,
localization. (Understand)

2.	 Data/information requirements
Define and describe various types of
data and information requirements,
including data management and
data integrity. (Understand)

3.	 Quality requirements
Define and describe various types
of quality requirements, including
reliability, usability. (Understand)

10 Certified Software Quality Engineer

4.	 Compliance requirements
Define and describe various
types of regulatory and safety
requirements. (Understand)

5.	 Security requirements
Define and describe various types
of security requirements including
data security, information security,
cybersecurity, data privacy.
(Understand)

6.	 Requirements elicitation methods
Describe and use various
requirements elicitation methods,
including customer needs analysis,
use cases, human factors studies,
usability prototypes, joint application
development (JAD), storyboards, etc.
(Apply)

7.	 Requirements evaluation
Assess the completeness,
consistency, correctness, and
testability of requirements, and
determine their priority. (Evaluate)

D.	 Requirements Management
1.	 Requirements change management

Assess the impact that changes to
requirements will have on software
development processes for all types
of life-cycle models. (Evaluate)

2.	 Bidirectional traceability
Use various tools and techniques
to ensure bidirectional traceability
from requirements elicitation and
analysis through design and
testing. (Apply)

E.	 Software Analysis,
	 Design, and Development

1.	 Design methods
Identify the steps used in software
design and their functions, and
define and distinguish between
software design methods.
(Understand)

2.	 Quality attributes and design
Analyze the impact that quality-
related elements (safety, security,
reliability, usability, reusability,
maintainability) can have on
software design. (Analyze)

3.	 Software reuse
Define and distinguish between
software reuse, reengineering, and
reverse engineering, and describe
the impact these practices can have
on software quality. (Understand)

4.	 Software development tools
Analyze and select the appropriate
development tools for modeling,
code analysis, requirements
management, and documentation.
(Analyze)

F.	 Maintenance Management
1.	 Maintenance types

Describe the characteristics of
corrective, adaptive, perfective,
and preventive maintenance
types. (Understand)

2.	 Maintenance strategy
Describe various factors
affecting the strategy for software
maintenance, including service-
level agreements (SLAs), short-
and long-term costs, maintenance
releases, product discontinuance,
and their impact on software
quality. (Understand)

3.	 Customer feedback management
Describe the importance of
customer feedback management
including quality of product support,
and post-delivery issues analysis
and resolution. (Understand)

IV. Project Management
	 (22 questions)

A.	 Planning, Scheduling,
	 and Deployment

1.	 Project planning
Use forecasts, resources, schedules,
task and cost estimates, etc., to
develop project plans. (Apply)

2.	 Work breakdown structure (WBS)
Use work breakdown structure
(WBS) in scheduling and
monitoring projects. (Apply)

3.	 Project deployment
Use various tools, including
milestones, objectives achieved,
and task duration to set goals
and deploy the project. (Apply)

11Certified Software Quality Engineer

B.	 Tracking and Controlling
1.	 Phase transition control

Use various tools and techniques
such as entry/exit criteria, quality
gates, Gantt charts, integrated
master schedules, etc., to control
phase transitions. (Apply)

2.	 Tracking methods
Calculate project-related
costs, including earned value,
deliverables, productivity, etc.,
and track the results against
project baselines. (Apply)

3.	 Project reviews
Use various types of project
reviews such as phase-end,
management, and retrospectives
or post-project reviews to assess
project performance and status,
to review issues and risks, and
to discover and capture lessons
learned from the project. (Apply)

4.	 Program reviews
Define and describe various
methods for reviewing and
assessing programs in terms
of their performance, technical
accomplishments, resource
utilization, etc. (Understand)

C.	 Risk Management
1.	 Risk management methods

Use risk management techniques
(e.g., assess, prevent, mitigate,
transfer) to evaluate project risks.
(Evaluate)

2.	 Software security risks
Evaluate risks specific to software
security, including deliberate
attacks (hacking, sabotage,
etc.), inherent defects that allow
unauthorized access to data,
and other security breaches. Plan
appropriate responses to minimize
their impact. (Evaluate)

3.	 Safety and hazard analysis
Evaluate safety risks and hazards
related to software development
and implementation and determine
appropriate steps to minimize their
impact. (Evaluate)

V. Software Metrics and
	 Analysis (19 questions)

A.	 Process and Product Measurement
1.	 Terminology

Define and describe metric
and measurement terms such as
reliability, internal and external
validity, explicit and derived
measures, and variation.
(Understand)

2.	 Software product metrics
Choose appropriate metrics to
assess various software attributes
(e.g., size, complexity, the
amount of test coverage needed,
requirements volatility, and overall
system performance). (Apply)

3.	 Software process metrics
Measure the effectiveness
and efficiency of software
processes (e.g., functional
verification tests (FVT), cost,
yield, customer impact, defect
detection, defect containment,
total defect containment
effectiveness (TDCE), defect
removal efficiency (DRE),
process capability). (Apply)

4.	 Data integrity
Describe the importance of data
integrity from planning through
collection and analysis and apply
various techniques to ensure data
quality, accuracy, completeness,
and timeliness. (Apply)

B.	 Analysis and Reporting Techniques
1.	 Metric reporting tools

Using various metric representation
tools, including dashboards,
stoplight charts, etc., to report
results. (Apply)

2.	 Classic quality tools
Describe the appropriate use
of classic quality tools (e.g.,
flowcharts, Pareto charts, cause
and effect diagrams, control
charts, and histograms). (Apply)

13Certified Software Quality Engineer

3.	 Problem-solving tools
Describe the appropriate use
of problem solving tools (e.g.,
affinity and tree diagrams, matrix
and activity network diagrams,
root cause analysis and data
flow diagrams [DFDs]). (Apply)

VI. Software Verification and
	 Validation (29 questions)

A.	 Theory
1.	 V&V methods

Use software verification and
validation methods (e.g., static
analysis, structural analysis,
mathematical proof, simulation,
and automation) and determine
which tasks should be iterated as
a result of modifications. (Apply)

2.	 Software product evaluation
Use various evaluation methods on
documentation, source code, etc.,
to determine whether user needs
and project objectives have been
satisfied. (Analyze)

B.	 Test Planning and Design
1.	 Test strategies

Select and analyze test strategies
(e.g., test-driven design, good-
enough, risk-based, time-box, top-
down, bottom-up, black-box, white-
box, simulation, automation, etc.)
for various situations. (Analyze)

2.	 Test plans
Develop and evaluate test plans
and procedures, including system,
acceptance, validation, etc., to
determine whether project objectives
are being met and risks are
appropriately mitigated. (Create)

3.	 Test designs
Select and evaluate various test
designs, including fault insertion,
fault-error handling, equivalence
class partitioning, boundary
value. (Evaluate)

4.	 Software tests
Identify and use various tests,
including unit, functional,
performance, integration,

regression, usability, acceptance,
certification, environmental load,
stress, worst-case, perfective,
exploratory, system. (Apply)

5.	 Tests of external products
Determine appropriate levels of
testing for integrating supplier,
third-party, and subcontractor
components and products. (Apply)

6.	 Test coverage specifications
Evaluate the adequacy of
test specifications such as
functions, states, data and time
domains, interfaces, security,
and configurations that include
internationalization and platform
variances. (Evaluate)

7.	 Code coverage techniques
Use and identify various tools
and techniques to facilitate code
coverage analysis techniques such
as branch coverage, condition,
domain, and boundary. (Apply)

8.	 Test environments
Select and use simulations,
test libraries, drivers, stubs,
harnesses, etc., and identify
parameters to establish a controlled
test environment. (Analyze)

9.	 Test tools
Identify and use test utilities,
diagnostics, automation, and test
management tools. (Apply)

10.	Test data management
Ensure the integrity and security
of test data through the use of
configuration controls. (Apply)

C.	 Reviews and Inspections
Use desk checks, peer reviews, walk-
throughs, inspections, etc., to identify
defects. (Apply)

D.	 Test Execution Documents
Review and evaluate test execution
documents such as test results, defect
reporting and tracking records, test
completion metrics, trouble reports,
input/output specifications. (Evaluate)

14 Certified Software Quality Engineer

VII. Software Configuration
	 Management (20 questions)

A.	 Configuration Infrastructure
1.	 Configuration management team

Describe the roles and responsibilities
of a configuration management
group. (Understand) (NOTE: The
roles and responsibilities of the
configuration control board [CCB]
are covered in area VII.C.2.)

2.	 Configuration management tools
Describe configuration management
tools as they are used for managing
libraries, build systems, and defect
tracking systems. (Understand)

3.	 Library processes
Describe dynamic, static, and
controlled library processes
and related procedures, such
as check-in/check-out, merge
changes. (Understand)

B.	 Configuration Identification
1.	 Configuration items

Describe software configuration
items (baselines, documentation,
software code, equipment),
identification methods (naming
conventions, versioning schemes).
(Understand)

2.	 Software builds and baselines
Describe the relationship between
software builds and baselines, and
describe methods for controlling
builds and baselines (automation,
new versions). (Understand)

C.	 Configuration Control
	 and Status Accounting

1.	 Item change and version control
Describe processes for
documentation control, item
change tracking, version control
that are used to manage various
configurations, and describe
processes used to manage
configuration item dependencies
in software builds and versioning.
(Understand)

2.	 Configuration control board (CCB)
Describe the roles, responsibilities
and processes of the CCB.
(Understand) (NOTE: The roles and
responsibilities of the configuration
management team are covered
in area VII.A.1.)

3.	 Concurrent development
Describe the use of configuration
management control principles in
concurrent development processes.
(Understand)

4.	 Status accounting
Discuss various processes for
establishing, maintaining, and
reporting the status of configuration
items, such as baselines, builds,
and tools. (Understand)

D.	 Configuration Audits
Define and distinguish between functional
and physical configuration audits and
how they are used in relation to product
specification. (Understand)

E.	 Product Release and Distribution
1.	 Product release

Assess the effectiveness of product
release processes (planning,
scheduling, defining hardware and
software dependencies). (Evaluate)

2.	 Customer deliverables
Assess the completeness of customer
deliverables including packaged
and hosted or downloadable
products, license keys and user
documentation, and marketing
and training materials. (Evaluate)

3.	 Archival processes
Assess the effectiveness of source
and release archival processes
(backup planning and scheduling,
data retrieval, archival of build
environments, retention of historical
records, offsite storage). (Evaluate)

Visit asq.org/cert for comprehensive exam information.

REMEMBER | Recall or recognize terms,
definitions, facts, ideas, materials, patterns,
sequences, methods, principles, etc.

UNDERSTAND | Read and understand
descriptions, communications, reports,
tables, diagrams, directions, regulations, etc.

APPLY | Know when and how to use
ideas, procedures, methods, formulas,
principles, theories, etc.

ANALYZE | Break down information into
its constituent parts and recognize their
relationship to one another and how they
are organized; identify sublevel factors or
salient data from a complex scenario.

EVALUATE | Make judgments about the
value of proposed ideas, solutions, etc.,
by comparing the proposal to specific
criteria or standards.

CREATE | Put parts or elements together
in such a way as to reveal a pattern or
structure not clearly there before; identify
which data or information from a complex
set is appropriate to examine further or
from which supported conclusions can
be drawn.

LEVELS OF COGNITION
Based on Bloom’s Taxonomy—Revised (2001)

In addition to content specifics, the subtext for each topic in this BoK also
indicates the intended complexity level of the test questions for that topic.
These levels are based on “Levels of Cognition” (from Bloom’s Taxonomy—
Revised, 2001) and are presented below in rank order, from least complex
to most complex.

Enhance your career
with ASQ certification today!

Visit asq.org/cert for additional
certification information including:

•	Applications

•	�Available certifications and
international language options

•	Reference materials

•	Study guides and test-taking tips

•	�Comprehensive exam information

•	ASQ sections

•	International contacts

•	Endorsements

Item B0110

